Chase Joyner

802 Homework 3

March 6, 2017

Problem 1

Show that the matrix \mathbf{A} given by

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{X}^{T} \mathbf{X} & \mathbf{T}^{T} \\
\mathbf{T} & \mathbf{0}
\end{array}\right]
$$

is a non-singular matrix, where \mathbf{X} is the design matrix for a non-full rank linear model and \mathbf{T} is a corresponding matrix such that $\mathbf{T} \boldsymbol{\beta}=\mathbf{0}$ is a side condition.

Solution: Assume that $\mathbf{X} \in \mathbb{R}^{n \times p}$ with $\operatorname{rank}(X)=k<p \leq n$. Then, since $\mathbf{T} \boldsymbol{\beta}=\mathbf{0}$ is a side condition, by definition we have $\operatorname{rank}(\mathbf{T})=p-k$ the following two properties

1) $\quad \operatorname{rank}\binom{\mathbf{X}}{\mathbf{T}}=p$
2) $\operatorname{rank}\binom{\mathbf{X}}{\mathbf{T}}=\operatorname{rank}(\mathbf{X})+\operatorname{rank}(\mathbf{T})$
which implies that the rows of \mathbf{T} and \mathbf{X} are linearly independent. Therefore, the columns of \mathbf{T}^{T} and \mathbf{X}^{T} are linearly independent. Since $C\left(\mathbf{X}^{T}\right)=C\left(\mathbf{X}^{T} \mathbf{X}\right)$, the columns of \mathbf{T}^{T} and $\mathbf{X}^{T} \mathbf{X}$ are linearly independent. Thus, \mathbf{A} is invertible.

Problem 2

Define $\mathbf{H}:=\mathbf{X}^{T} \mathbf{X}+\mathbf{T}^{T} \mathbf{T}$. Show that the inverse of \mathbf{A} in Problem 1 is given by

$$
\mathbf{A}^{-1}=\left[\begin{array}{cc}
\mathbf{H}^{-1} \mathbf{X}^{T} \mathbf{X} \mathbf{H}^{-1} & \mathbf{H}^{-1} \mathbf{T}^{T} \\
\mathbf{T} \mathbf{H}^{-1} & \mathbf{0}
\end{array}\right] .
$$

Solution: Was out sick late last week, couldn't seek help on this one $=($.

Problem 3

In the non-full rank linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$, let $\mathbf{C} \in \mathbb{R}^{m \times p}$ be a full-row-rank matrix such that $\mathbf{C} \boldsymbol{\beta}$ is estimable. Define $S S H=(\mathbf{C} \widehat{\boldsymbol{\beta}})^{T}\left(\mathbf{C G C}^{T}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}})$ and $S S E=\mathbf{y}^{T}\left(\mathbf{I}-\mathbf{X G X}^{T}\right) \mathbf{y}$, where \mathbf{G} is a generalized inverse of $\mathbf{X}^{T} \mathbf{X}$. Show that $S S H$ and $S S E$ are (statistically) independent.

Solution: First notice that we can express $\widehat{\boldsymbol{\beta}}$ as

$$
\widehat{\boldsymbol{\beta}}=\mathbf{G X}^{T} \mathbf{y} .
$$

Therefore, we can rewrite $S S H$ in the following way:

$$
S S H=(\mathbf{C} \widehat{\boldsymbol{\beta}})^{T}\left(\mathbf{C G C}^{T}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}})=\mathbf{y}^{T} \mathbf{X G}^{T} \mathbf{C}^{T}\left(\mathbf{C G C}^{T}\right)^{-1} \mathbf{C G X} \mathbf{X}^{T} \mathbf{y} \equiv \mathbf{y}^{T} \mathbf{A} \mathbf{y}
$$

where \mathbf{A} is the matrix given by

$$
\mathbf{A}=\mathbf{X G}^{T} \mathbf{C}^{T}\left(\mathbf{C G} \mathbf{C}^{T}\right)^{-1} \mathbf{C G} \mathbf{X}^{T}
$$

Also, denote $\mathbf{B}=\mathbf{I}-\mathbf{X G X}{ }^{T}$ and so $S S E=\mathbf{y}^{T} \mathbf{B y}$. To show that $S S H$ and $S S E$ are independent, it suffices to show that $\mathbf{A B}=\mathbf{0}$ by a result of quadratic forms of normal random variables. Indeed,

$$
\begin{aligned}
& \mathbf{A B}=\mathbf{X G}^{T} \mathbf{C}^{T}\left(\mathbf{C G} \mathbf{C}^{T}\right)^{-1} \mathbf{C G} \mathbf{X}^{T}\left(\mathbf{I}-\mathbf{X G} \mathbf{X}^{T}\right)=\mathbf{A}-\mathbf{X G}^{T} \mathbf{C}^{T}\left(\mathbf{C G} \mathbf{C}^{T}\right)^{-1} \mathbf{C G X} \mathbf{X}^{T} \mathbf{X G X} \\
& \\
&\left.=\mathbf{A}-\mathbf{X G}^{T} \mathbf{C}^{T}(\mathbf{C G C})^{T}\right)^{-1} \mathbf{C}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-} \mathbf{X}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-} \mathbf{X}^{T} \\
&=\mathbf{A}-\mathbf{X G}^{T} \mathbf{C}^{T}\left(\mathbf{C G C} \mathbf{C}^{T}\right)^{-1} \mathbf{C}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-} \mathbf{X}^{T} \\
&\left.=\mathbf{A}-\mathbf{X} \mathbf{G}^{T} \mathbf{C}^{T}(\mathbf{C G C})^{T}\right)^{-1} \mathbf{C} \mathbf{G} \mathbf{X}^{T}=\mathbf{A}-\mathbf{A}=\mathbf{0} .
\end{aligned}
$$

Therefore, SSH and SSE are independent.

Problem 4

For the non-full rank version of the Gauss-Markov model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon},
$$

derive the F-test for testing $H_{0}: \mathbf{C} \boldsymbol{\beta}=\mathbf{t}$, where \mathbf{C} is a $q \times p$ matrix of $\operatorname{rank} q$, \mathbf{t} is a specified vector of constants, and the vector of parametric functions $\mathbf{C} \boldsymbol{\beta}$ is estimable.

Solution: Consider the equivalent test $H_{0}: \mathbf{C} \boldsymbol{\beta}-\mathbf{t}=\mathbf{0}$ and now

$$
S S H=(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{T}\left(\mathbf{C G} \mathbf{C}^{T}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t}),
$$

where \mathbf{G} is a generalized inverse of $\mathbf{X}^{T} \mathbf{X}$ as before. Notice that

$$
\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t}=\mathbf{C G} \mathbf{X}^{T} \mathbf{y}-\mathbf{t} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

where $\mu=\mathbf{C} \boldsymbol{\beta}-\mathbf{t}$ and $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{C G C} \mathbf{C}^{T}$. Therefore, it follows that

$$
\frac{S S H}{q} \sim \chi_{q}^{2}(\lambda)
$$

where the noncentrality parameter λ is given by

$$
\lambda=(\mathbf{C} \boldsymbol{\beta}-\mathbf{t})^{T}\left(\mathbf{C G C} \mathbf{C}^{T}\right)^{-1}(\mathbf{C} \boldsymbol{\beta}-\mathbf{t})
$$

and is zero under the null hypothesis. Recall $S S E$ and $\widehat{\boldsymbol{\beta}}$ are independent. Therefore, since this $S S H$ is just a function of $\widehat{\boldsymbol{\beta}}$, it is independent of $S S E$. Also recalling that

$$
\frac{S S E}{n-k-1} \sim \chi_{n-k-1}^{2}
$$

it now follows that we can test the hypothesis using the F statistic

$$
F=\frac{S S H / q}{S S E /(n-k-1)} \sim F_{q, n-k-1}
$$

Problem 5

Consider the effects version of the one-way layout model given by

$$
y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad j=1, \ldots, n_{i}, \quad i=1, \ldots, a
$$

with $\sum_{i=1}^{a} n_{i}>a$. Explain which of the following linear parametric functions are estimable.
(a) $\mu+\alpha_{1}$
(b) μ
(c) $\sum_{i=2}^{a} \alpha_{i}$
(d) $\alpha_{2}-\alpha_{a}$

Solution: First, we should notice that the design matrix here can be written as

$$
\mathbf{X}=\left(\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{a}
\end{array}\right)
$$

where \mathbf{x}_{i} is a row vector of all zeros, except for a 1 in the first index (for μ) and also index $i+1\left(\right.$ for $\left.\alpha_{i}\right)$.
(a) is estimable since $\lambda=(1,1,0, \ldots 0)^{T} \in C\left(\mathbf{X}^{T}\right)$, in fact $\lambda=\mathbf{x}_{1}^{T}$.
(b) is not estimable since $\lambda=(1,0, \ldots, 0)^{T} \notin C\left(\mathbf{X}^{T}\right)$. To see this, try taking any linear combination of the rows of \mathbf{X} and you will always have a 1 remaining after the first index of the resulting vector.
(c) is not estimable since $\lambda=(0,0,1,, \ldots, 1)^{T} \notin C\left(\mathbf{X}^{T}\right)$. To see this, try taking any linear combination of the rows of \mathbf{X}, but we can only obtain a vector like $(a, 0,1, \ldots, 1)^{T}$, not λ.
(d) is estimable since it is a contrast.

